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Abstract. Cardiac electrophysiological simulation is a very complex computational process. 
Running on Graphics processing unit (GPU) is an effective method for cardiac electrophysiological 
simulation. In addition, the use of adaptive time-step can also effectively speed up the simulation of 
heart cells. However, the previous works running on GPU could not get apparent speedup (only 1.5 
times). This paper implements adaptive time-step methods on multi-GPU to run Luo-Rudy dynamic 
(LRd) ventricular action potential model incorporating a Markov Sodium Channel model. For 
adaptive time-step methods, we use Traditional Hybrid Method(THM) and Chen-Chen-Luo’s 
quadratic adaptive algorithm (CCL). As LRd is solved by THM or CCL in a single GPU, the 
acceleration is 17.5 times(17.5x) and 43x respectively compared with the fixed time-step under Mix 
Root Mean Square error lower than 5%. In 2 GPUs, the acceleration of THM and CCL is 9.7x and 
33.7x separately. As there are 4 GPUs, the acceleration of THM is only 5.7 x while acceleration is 
25.6x for CCL. In addition, compared with the fixed time-step in CPU, THM and CCL accelerated 
to 1861x and 5054x in a single GPU, 1885x and 6652x in 2 GPUs, 2093x and 8024x in 4 GPUs. In 
conclusion, CCL is much better than THM to save computation cost on multi-GPU, while the 
speedup is not lineally increased with the number of GPU. 

1. Introduction 

The heart is one of the important organs of human beings, and cardiovascular disease is one of 
the three major diseases of human beings, so it is of great significance for the study of the heart. 
Over recent decades, a variety of cardiac virtual models have been used to explore the causes of 
various diseases of the human heart. Cardiac electrophysiological processes are of extreme 
complication, and computation models have become valuable tools for studying and understanding 
such complex phenomena because they allow lots of information from different physical scales and 
experiments to be combined to achieve better simulation of the entire system function. This is the 
conversion of highly complex biophysical processes into complex mathematical and computational 
models. The modern heart model is described by a nonlinear system coupled to a Partial Differential 
Equation (PDE) of Nonlinear Ordinary Differential Equations (ODE). 

Since the whole cardiac model includes billions of cells containing multiple state variables per 
cell, it takes a lot of computational resources to simulate a whole heart. This requires researchers to 
focus on how to speed up the simulation process. Most of the current acceleration methods are 
using GPU or using the adaptive time-step method. 

GPU is an effective acceleration tool, giving up-to 200x for a single GPU applied on cardiac 
electrophysiological simulation [1-6]. The acceleration was farther improved in the multi-GPU. 
However, it is still impossible to complete the simulation within an acceptable time frame (hours). 
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Papers [1-6] has not used the adaptive time-step method on the GPU, while the adaptive time-step 
method can effectively accelerate cardiac electrophysiology simulation.  

At present, some researchers used simple adaptive algorithms to accelerate in the GPU. Victor M. 
Garcia[7] and Rafael Sachetto Oliveira[8] combined GPU and adaptive time-step method in order 
to speed up the simulation of cardiac electrophysiology, but it was only 1.5x faster than the fixed 
time-step in GPU. 

This paper accelerates cardiac cell simulation using CCL and THM in multi-GPU to check if the 
apparent speedup is realized or not. 

2. Methods 

2.1 Cardiac Ventricular Cell Model 
The form of reaction diffusion equation describing cardiac electrophysiological model is as 

follows: 

∇ �𝜎𝜎𝑖𝑖 • ∇𝑉𝑉𝑖𝑖� =  𝐴𝐴𝑚𝑚(𝐶𝐶𝑚𝑚
𝜕𝜕𝑉𝑉𝑚𝑚
𝜕𝜕𝑡𝑡

+ 𝐼𝐼𝑖𝑖𝑜𝑜𝑛𝑛 +  𝐼𝐼𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚)       (1) 

Where ∇ is gradient operator, 𝜎𝜎𝑖𝑖 is intracellular conductivity, 𝑉𝑉𝑖𝑖 is intracellular potential, 𝐴𝐴𝑚𝑚 
is the ratio of cell surface area to volume, 𝐶𝐶𝑚𝑚 is the capacitance of unit membrane area, 𝑉𝑉𝑚𝑚 is 
cross-membrane potential, 𝐼𝐼𝑖𝑖𝑜𝑜𝑛𝑛 is the sum of transmembrane ion Current, 𝐼𝐼𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚 is the stimulation 
current, t represents time. The goal of the equation is to solve the 𝑉𝑉𝑚𝑚, so equation (1) can be 
converted into: 

𝜕𝜕𝑉𝑉𝑚𝑚
𝜕𝜕𝑡𝑡

=  −
𝐼𝐼𝑖𝑖𝑜𝑜𝑛𝑛+ 𝐼𝐼𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚

𝐶𝐶𝑚𝑚
+ 

𝜎𝜎𝑖𝑖
𝐴𝐴𝑚𝑚𝐶𝐶𝑚𝑚

∇2𝑉𝑉𝑚𝑚        (2) 

LetD_diff=  σ_i/(A_m C_m )，we have： 
𝜕𝜕𝑉𝑉𝑚𝑚
𝜕𝜕𝑡𝑡

=  −
𝐼𝐼𝑖𝑖𝑜𝑜𝑛𝑛+ 𝐼𝐼𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚

𝐶𝐶𝑚𝑚
+ 𝐷𝐷𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓∇

2𝑉𝑉𝑚𝑚        (3) 

Where D_diff is the diffusion coefficient. -
𝐼𝐼𝑖𝑖𝑜𝑜𝑛𝑛+ 𝐼𝐼𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚

𝐶𝐶𝑚𝑚
  is reaction term and 𝐷𝐷𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓∇

2𝑉𝑉𝑚𝑚  is 

diffusion term. 
The reaction term is incorporated into the system of ODEs and the diffusion term is incorporated 

into the system of PDEs. To solve the involved system of ODEs, we have adopted Rush-Larsen 
method [9] for gating variable and Forward-Euler. Finite differences and Forward-Euler temporal 
discretization are applied to the purely diffusive PDE raised from splitting. 

2.2 LRd model + Markov Sodium Channel Model 
LRd [10] was a dynamic ventricular action potential model proposed by Luo and Rudy in 1994. 

Many ion channels were included in LRd model with the absorption and release of calcium ions in 
the sarcoplasmic reticulum (SR). This was the first time that SR was added to a cardiac cell model. 
The main function of SR in cardiac cells is to regulate the concentration of ions in the cytoplasm. 
LRd model was created for the mammalian ventricular action potential is based mostly on the guin-
ea pig ventricular cell. The following processes are formulated: Ca2+ current through the L-type 
channel (𝐼𝐼𝐶𝐶𝐶𝐶), the Na+-Ca2+ exchanger, Ca2+ release and uptake by the SR, buffering of Ca2+ in the 
SR and in the myoplasm, a Ca2+ pump in the sarcolemma, the Na+-K+ pump, and a nonspecific 
Ca2+-activated membrane current. Activation of 𝐼𝐼𝐶𝐶𝐶𝐶 is an order of magnitude faster than in previ-
ous models. Inactivation of 𝐼𝐼𝐶𝐶𝐶𝐶 depends on both the membrane voltage and [Ca2+]𝑖𝑖. SR is divided 
into two subcompartments, a network SR (NSR) and a junctional SR (JSR). Functionally, Ca2+ en-
ters NSR and translocates to JSR following a monoexponential function. Release of Ca2+ occurs at 
JSR and can be triggered by two different mechanisms, Ca2+-induced Ca2+ release and spontaneous 
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release. The model provides the basis for the study of arrhythmogenic activity of the single myocyte 
including afterdepolarizations and triggered activity. It can simulate cellular responses under differ-
ent degrees of Ca2+ overload. 

In order to study the performance of LRd model with Markovian ion channel[11] mentioned as 
LRdm, 𝐼𝐼𝑁𝑁𝑁𝑁 channel of Huxley-Hogkin model in LRd is replaced with the wild-type Markov mod-
els which consists of one conducting open state (O), three closed states (C1, C2, C3), two closed-
inactivation states (IC3, IC2), one fast inactivation state (IF), and two intermediate inactivation 
states (IM1, IM2). 

2.3 Time Adaptive Methods 
The adaptive time-step method can have an effective acceleration for cardiac cell simulation. 

The basic idea is to select different time-step according to the inconsistent voltage change rate.  As 
the voltage rate changes rapidly, in order to maintain the stability of the cell, it is necessary to give 
the cell a small time-step. On the contrary, As the voltage change rate is slow, a large time-step can 
be set to speed up the simulation. 

2.3.1 Traditional Hybrid Method 
Traditional Hybrid Method (THM) was proposed by Victorri in 1985 [12]. It computes time-step 

through the deviant of voltage, which limit in ∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ≤  ∆V ≤  ∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚. The change rate of voltage 
dV/dt determines ∆t. As dV/dt < ∆V𝑚𝑚𝑚𝑚𝑚𝑚, the time-step becomes larger. As dV/dt > ∆V𝑚𝑚𝑚𝑚𝑚𝑚, the 
time-step becomes smaller. A range of time-step should be set in order to avoid too small or too 
large time-step for high computation cost or instability.  

If ∆V < ∆V𝑚𝑚𝑚𝑚𝑚𝑚, then: ∆t = ∆V𝑚𝑚𝑚𝑚𝑚𝑚/(dV/dt) 
If ∆V > ∆V𝑚𝑚𝑚𝑚𝑚𝑚, then: ∆t = ∆V𝑚𝑚𝑚𝑚𝑚𝑚/(dV/dt) 
If ∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ≤  ∆V ≤  ∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, then: ∆t =  ∆V  

THM can effectively speed up the heart cell simulation, but it has shortage at local maximum and 
minimum zones. As small ∆V creates unwanted large time-step, Chen-Chen-Luo’s quadratic adap-
tive algorithm(CCL) [13] was proposed to solve this problem.  

2.3.2 CCL Method 
CCL is an effective time-step method proposed by Chen et al [13]. to improve traditional Hybrid 

method. The main idea of CCL is to take d2V/dt2 into account, and use d2V/dt2 to deal with 
local extremum problems. 

Consider the second order Taylor expansion of V(𝑡𝑡𝑛𝑛+1): 
V(𝑡𝑡𝑛𝑛+1) ≅  V(𝑡𝑡𝑛𝑛) + V′(𝑡𝑡𝑛𝑛)(𝑡𝑡𝑛𝑛+1 −  𝑡𝑡𝑛𝑛) + 1

2
V′′(𝑡𝑡𝑛𝑛)(𝑡𝑡𝑛𝑛+1 −  𝑡𝑡𝑛𝑛)2  (4) 

Where V′(𝑡𝑡𝑛𝑛) = 𝑉𝑉(𝑡𝑡𝑛𝑛+1)− 𝑉𝑉(𝑡𝑡𝑛𝑛)
𝑡𝑡𝑛𝑛+1− 𝑡𝑡𝑛𝑛

, V′′(𝑡𝑡𝑛𝑛) = V′(𝑡𝑡𝑛𝑛+1)− V′(𝑡𝑡𝑛𝑛)
(𝑡𝑡𝑛𝑛+1− 𝑡𝑡𝑛𝑛)

.  
Get: 

∆V ≅  dV
𝑑𝑑𝑑𝑑
∗ ∆𝑡𝑡 + 1

2
d2V
𝑑𝑑𝑑𝑑2

∗ ∆𝑡𝑡2        (5) 
solve the second-order equation: 

∆𝑡𝑡 = −𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 ± �(𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑)2 + 2∗𝑑𝑑2𝑉𝑉/𝑑𝑑𝑑𝑑2∗∆𝑉𝑉
𝑑𝑑2𝑉𝑉/𝑑𝑑𝑑𝑑2

      (6) 

At �(𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑)2  +  2 ∗ 𝑑𝑑2𝑉𝑉/𝑑𝑑𝑑𝑑2 ∗ ∆𝑉𝑉 ≥ 0 , formula (6) can be solved. If (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑)2  +  2 ∗
𝑑𝑑2𝑉𝑉/𝑑𝑑𝑑𝑑2 ∗ ∆𝑉𝑉 < 0, formula (6) can’t be solved, so ∆𝑡𝑡 is computed by the follow formula: 

∆𝑡𝑡 = − 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑
𝑑𝑑2𝑉𝑉/𝑑𝑑𝑑𝑑2

          (7) 
Meantime, in order to ensure voltage stable, ∆𝑡𝑡 can’t be changed rapidly. So ∆𝑡𝑡is limited at 2x 

faster or slower than last time-step. It means that ∆𝑡𝑡 can’t be higher 2x or lower 2x than the last 
time-step: 

1/2 ∗ ∆𝑡𝑡𝑛𝑛 <  ∆𝑡𝑡𝑛𝑛+1 < 2 ∗ ∆𝑡𝑡𝑛𝑛  
Also ∆𝑡𝑡 should be in the range of ∆𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ≤  ∆𝑡𝑡𝑛𝑛 ≤  ∆𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚. 
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2.4 GPU implementation 
2.4.1 single GPU 

In GPU, we arrange large matrices (potentials, currents, gated variables, etc.) in rows and organ-
ize them into one-dimensional arrays. Because large matrices are much larger than the amount of 
on-chip memory, they can only be loaded into off-chip global memory. For constant data (tempera-
ture, conductivity, cell volume, etc.) that are shared by all cells, place it in constant memory. Con-
stant memory, although off-chip, is an efficient use of memory bandwidth because of its combined 
access (a single read is available to all threads that need this data). For small-scale data, we put it 
into shared memory to make efficient use of bandwidth. For the boundary, we consider the third 
boundary condition: extending the outer cell by another layer.  

The pseudo-code for the process is shown in Figure 1A. 
 
 
 
 
 
 
 
 
 
 
 
 
    A      B 

Figure 1. Pseudo-code. A is the pseudo-code of single GPU  
and B is the pseudo-code of multi-GPUs 

2.4.2 multi-GPU 
In multi-GPUs, we first divide the data into different GPUs on average. Data exchange before 

PDE computation on different GPUs (Figure 1B). In data exchange, we define transition zone and 
fill area. The transition zone stores the data that needs to be transferred to other GPUs, and the fill 
area stores the data that needs to be transferred from other GPUs. Figure 2 shows the data exchange 
process, where the data of the transition zone is put into the fill area. 

 
Figure 2. Data exchange. Light gray indicates the fill area  

and black indicates the transition zone 

2.5 Mix Root Mean Square error 
The MRMSe is proposed by Kevin R [14] and defines by: 

[MEMSe] =  �1
𝑁𝑁
∑ (𝑤𝑤�𝑖𝑖 − 𝑤𝑤𝑖𝑖

1 + |𝑤𝑤�𝑖𝑖|
)2𝑁𝑁

𝑖𝑖=1   

Initialization data; 
t = 0;    // record running time 
while (t < simulated time){ 
Boundary treatment;  
Compute ODE for ∆t; 
Compute PDE for ∆t;  
if (t % output-time){ 
Output potential; 
t = t + ∆t; 
} 
Output t; 
 

Initialization data; 
t = 0;    // record running time 
while (t < simulated time){ 
Boundary treatment;  
Compute ODE for ∆t; 
Data exchange 
Compute PDE for ∆t;  
if (t % output-time){ 
Output potential; 
t = t + ∆t; 
} 
Output t; 
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Where w𝑖𝑖 and w�𝑖𝑖 denote the numerical and the reference solutions of scalar quantity w at time 
point i.  

2.6 Experimental conditions 
The CPU we used was Intel core i7 7700, with main frequency 3.6 GHz, and 16 GB host memory. 

The GPU used is NVIDIA GeForce GTX 1080 TI with a frequency of 1582 MHz and video 
memory of 12 GB. In addition, the simulation time was 600 ms, and the stimulation started at 10 ms 
and lasted 0.5 ms. The simulation was carried out with fixed time-step, THM and CCL respectively. 

3. Results 

LRdm is run at the fixed time-step as reference solution in comparison to THM and CCL for 
computation cost at CPU and multi-GPU. 

3.1 Fixed time-step method 
Table 1. Computation time in a fixed time-step. For 2000*2000, 

CPU cannot be run due to insufficient memory. 

model grid dt(ms) 
time(s) 

CPU 1 GPU 2 GPU 4 GPU 

LRdm 
1000*1000 0.001 1023954.0 6710.3 3841.4 2138.6 
1500*1500 0.001 2062320.1 14984.5 8344.1 4768.0 
2000*2000 0.001 / 27519.0 15188.3 8564.8 

Using GPU to perform cardiac electrophysiological simulation is an effective acceleration meth-
od. Table 1 shows the computation time in a fixed time-step and apparently GPU has higher accel-
eration efficiency than CPU. It has 150x speedup using GPU in comparison to CPU in LRdm. With 
the higher the speedup and the larger the number of GPU, the acceleration reaches up to 270x for 2 
GPUs and up to 450x for 4 GPUs.  

3.2 THM acceleration 
Table 2. Computation time with THM method 

model grid dt(ms) 
time(s) 

CPU 1 GPU 2 GPU 4 GPU 

LRdm 
1000*1000 0.001-0.1 49185.7 695.1 681.5 650.7 
1500*1500 0.001-0.1 94506.9 1108.7 1094.0 985.4 
2000*2000 0.001-0.1 139386.1 1571.8 1566.8 1500.4 

In Table 2 THM in CPU has 20x acceleration compared to the fixed time-step. In a single GPU, 
its acceleration reaches 17.5x than the fixed time-step. However, it is found that the acceleration 
decreases as the number of GPU increases, in which acceleration is down to 9.7x in 2 GPUs, and 
further down to 5.7x in 4 GPUs. 

3.3 CCL acceleration 
Table 3. Computation time with CCL method 

model grid dt(ms) time(s) 
CPU 1 GPU 2 GPU 4 GPU 

LRdm 
1000*1000 0.001-0.1 11453.5 228.1 177.1 141.7 
1500*1500 0.001-0.1 27029.4 408.3 310.7 257.0 
2000*2000 0.001-0.1 43325.8 635.9 450.3 334.5 
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In Table 3, CCL has 90x speedup than the fixed time-step method in CPU, and there is 40x 
speedup in single GPU, 30x in 2 GPUs, and only 20x in 4 GPUs. Similar to THM, the acceleration 
of CCL decreases as the number of GPU increases. However, CCL can still accelerate to over 20x 
in 4 GPUs while it is only 5.7x for THM.  

3.4 Acceleration ratio for THM and CCL 

 
Figure 3. Acceleration ratio for THM and CCL 

Figure 3 shows the acceleration of CCL and THM compared to the fixed time-step in CPU and 
multi-GPU. Obviously, CCL is better than THM. As the number of GPUs increases, THM accelera-
tion increases hardly, while CCL acceleration increases apparently. In 4 GPUs, CCL accelerates to 
7000x while THM only increases to 2000x. It indicates that CCL has better acceleration than THM. 

According to section 2.3, the computation of CCL is obviously more complicated than THM, but 
it is true that CCL is faster than THM in simulation. In fact, CCL has a larger granularity for time-
step partitioning than THM and therefore it has a greater acceleration. CCL maintained a large time-
step before and after stimulation as THM maintained a relatively small time-step. Both CCL and 
THM maintained small time-step during stimulation. At the local extreme point, CCL maintains a 
small time-step less than THM. Thus CCL has faster acceleration than THM. 

3.5 Mix Root Mean Square error 
Table 4. MRMSe, the benchmark is made with a fixed time-step of 0.0001ms 

model method dt(ms) 
MRMSe 

1 GPU 2 GPU 4 GPU 

LRdm 
fix time 0.001 0.5% 0.5% 0.5% 

CCL 0.001-0.1 1.9% 1.9% 1.9% 
THM 0.001-0.1 3.0% 3.0% 3.0% 

In Table 4, the MRMSe of the fixed time-step (0.001ms) is only 0.5%, it is 1.91% for CCL, and it 
is 3.06% for THM. It is obvious that the accuracy of CCL is better than that of THM.  

4. Conclusion 

Neither GPU nor adaptive time-step methods alone can achieve good acceleration. This study 
combines GPU with CCL or THM to achieve thousands of times of acceleration in a single GPU. In 
the previous study, only 498x acceleration was achieved by using the adaptive time-step method 
different from CCL and THM in a single GPU [8]. It shows that THM and CCL have good acceler-
ation in GPU and CCL has better acceleration than THM. In a single GPU, CCL is 2.4x faster than 
THM, and it is 3.5x or 4.5x faster in 2 or 4 GPUs separately. The MRMSe of CCL was only 1.9% 
in comparison to 3.0% of THM. Therefore, CCL is better than THM in terms of acceleration and 
accuracy. However, in multi-GPU as the number of GPUs increases to 4, CCL only accelerates by 
1.6x while THM hardly accelerates at all. CCL acceleration increases from 4000x in a single GPU 
to 7000x in 4 GPUs while it increases from 1800x to 2000x only for THM. In future researches, it 
should be paid attention to the linear acceleration of adaptive time methods in multi-GPUs. 

0.00

5000.00

10000.00

CPU 1 GPU 2 GPU 4 GPU

CCL THM
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