

An Adaptive Time-Step Method for Cardiac Cell
Simulation based on Multi-GPU

Haiyi Ye, Ching-Hsing Luo*, Xinji Chen

Sun Yat-sen University, School of Data and Computer Science, Guangzhou, China
luojinx5@mail.sysu.edu.cn

*Corresponding author

Keywords: Computer Simulation, Ventricular Cell, Adaptive Time-step Method, Graphics
Processing Unit, High Performance Computing

Abstract. Cardiac electrophysiological simulation is a very complex computational process.
Running on Graphics processing unit (GPU) is an effective method for cardiac electrophysiological
simulation. In addition, the use of adaptive time-step can also effectively speed up the simulation of
heart cells. However, the previous works running on GPU could not get apparent speedup (only 1.5
times). This paper implements adaptive time-step methods on multi-GPU to run Luo-Rudy dynamic
(LRd) ventricular action potential model incorporating a Markov Sodium Channel model. For
adaptive time-step methods, we use Traditional Hybrid Method(THM) and Chen-Chen-Luo’s
quadratic adaptive algorithm (CCL). As LRd is solved by THM or CCL in a single GPU, the
acceleration is 17.5 times(17.5x) and 43x respectively compared with the fixed time-step under Mix
Root Mean Square error lower than 5%. In 2 GPUs, the acceleration of THM and CCL is 9.7x and
33.7x separately. As there are 4 GPUs, the acceleration of THM is only 5.7 x while acceleration is
25.6x for CCL. In addition, compared with the fixed time-step in CPU, THM and CCL accelerated
to 1861x and 5054x in a single GPU, 1885x and 6652x in 2 GPUs, 2093x and 8024x in 4 GPUs. In
conclusion, CCL is much better than THM to save computation cost on multi-GPU, while the
speedup is not lineally increased with the number of GPU.

1. Introduction

The heart is one of the important organs of human beings, and cardiovascular disease is one of
the three major diseases of human beings, so it is of great significance for the study of the heart.
Over recent decades, a variety of cardiac virtual models have been used to explore the causes of
various diseases of the human heart. Cardiac electrophysiological processes are of extreme
complication, and computation models have become valuable tools for studying and understanding
such complex phenomena because they allow lots of information from different physical scales and
experiments to be combined to achieve better simulation of the entire system function. This is the
conversion of highly complex biophysical processes into complex mathematical and computational
models. The modern heart model is described by a nonlinear system coupled to a Partial Differential
Equation (PDE) of Nonlinear Ordinary Differential Equations (ODE).

Since the whole cardiac model includes billions of cells containing multiple state variables per
cell, it takes a lot of computational resources to simulate a whole heart. This requires researchers to
focus on how to speed up the simulation process. Most of the current acceleration methods are
using GPU or using the adaptive time-step method.

GPU is an effective acceleration tool, giving up-to 200x for a single GPU applied on cardiac
electrophysiological simulation [1-6]. The acceleration was farther improved in the multi-GPU.
However, it is still impossible to complete the simulation within an acceptable time frame (hours).

2019 5th International Conference on Medical Engineering and Bioinformatics(MEB 2019)

Published by CSP © 2019 the Authors 64

mailto:luojinx5@mail.sysu.edu.cn

Papers [1-6] has not used the adaptive time-step method on the GPU, while the adaptive time-step
method can effectively accelerate cardiac electrophysiology simulation.

At present, some researchers used simple adaptive algorithms to accelerate in the GPU. Victor M.
Garcia[7] and Rafael Sachetto Oliveira[8] combined GPU and adaptive time-step method in order
to speed up the simulation of cardiac electrophysiology, but it was only 1.5x faster than the fixed
time-step in GPU.

This paper accelerates cardiac cell simulation using CCL and THM in multi-GPU to check if the
apparent speedup is realized or not.

2. Methods

2.1 Cardiac Ventricular Cell Model
The form of reaction diffusion equation describing cardiac electrophysiological model is as

follows:

∇ �𝜎𝜎𝑖𝑖 • ∇𝑉𝑉𝑖𝑖� = 𝐴𝐴𝑚𝑚(𝐶𝐶𝑚𝑚
𝜕𝜕𝑉𝑉𝑚𝑚
𝜕𝜕𝑡𝑡

+ 𝐼𝐼𝑖𝑖𝑜𝑜𝑛𝑛 + 𝐼𝐼𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚) (1)

Where ∇ is gradient operator, 𝜎𝜎𝑖𝑖 is intracellular conductivity, 𝑉𝑉𝑖𝑖 is intracellular potential, 𝐴𝐴𝑚𝑚
is the ratio of cell surface area to volume, 𝐶𝐶𝑚𝑚 is the capacitance of unit membrane area, 𝑉𝑉𝑚𝑚 is
cross-membrane potential, 𝐼𝐼𝑖𝑖𝑜𝑜𝑛𝑛 is the sum of transmembrane ion Current, 𝐼𝐼𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚 is the stimulation
current, t represents time. The goal of the equation is to solve the 𝑉𝑉𝑚𝑚, so equation (1) can be
converted into:

𝜕𝜕𝑉𝑉𝑚𝑚
𝜕𝜕𝑡𝑡

= −
𝐼𝐼𝑖𝑖𝑜𝑜𝑛𝑛+ 𝐼𝐼𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚

𝐶𝐶𝑚𝑚
+

𝜎𝜎𝑖𝑖
𝐴𝐴𝑚𝑚𝐶𝐶𝑚𝑚

∇2𝑉𝑉𝑚𝑚 (2)

LetD_diff= σ_i/(A_m C_m)，we have：
𝜕𝜕𝑉𝑉𝑚𝑚
𝜕𝜕𝑡𝑡

= −
𝐼𝐼𝑖𝑖𝑜𝑜𝑛𝑛+ 𝐼𝐼𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚

𝐶𝐶𝑚𝑚
+ 𝐷𝐷𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓∇

2𝑉𝑉𝑚𝑚 (3)

Where D_diff is the diffusion coefficient. -
𝐼𝐼𝑖𝑖𝑜𝑜𝑛𝑛+ 𝐼𝐼𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚

𝐶𝐶𝑚𝑚
 is reaction term and 𝐷𝐷𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓∇

2𝑉𝑉𝑚𝑚 is

diffusion term.
The reaction term is incorporated into the system of ODEs and the diffusion term is incorporated

into the system of PDEs. To solve the involved system of ODEs, we have adopted Rush-Larsen
method [9] for gating variable and Forward-Euler. Finite differences and Forward-Euler temporal
discretization are applied to the purely diffusive PDE raised from splitting.

2.2 LRd model + Markov Sodium Channel Model
LRd [10] was a dynamic ventricular action potential model proposed by Luo and Rudy in 1994.

Many ion channels were included in LRd model with the absorption and release of calcium ions in
the sarcoplasmic reticulum (SR). This was the first time that SR was added to a cardiac cell model.
The main function of SR in cardiac cells is to regulate the concentration of ions in the cytoplasm.
LRd model was created for the mammalian ventricular action potential is based mostly on the guin-
ea pig ventricular cell. The following processes are formulated: Ca2+ current through the L-type
channel (𝐼𝐼𝐶𝐶𝐶𝐶), the Na+-Ca2+ exchanger, Ca2+ release and uptake by the SR, buffering of Ca2+ in the
SR and in the myoplasm, a Ca2+ pump in the sarcolemma, the Na+-K+ pump, and a nonspecific
Ca2+-activated membrane current. Activation of 𝐼𝐼𝐶𝐶𝐶𝐶 is an order of magnitude faster than in previ-
ous models. Inactivation of 𝐼𝐼𝐶𝐶𝐶𝐶 depends on both the membrane voltage and [Ca2+]𝑖𝑖. SR is divided
into two subcompartments, a network SR (NSR) and a junctional SR (JSR). Functionally, Ca2+ en-
ters NSR and translocates to JSR following a monoexponential function. Release of Ca2+ occurs at
JSR and can be triggered by two different mechanisms, Ca2+-induced Ca2+ release and spontaneous

65

release. The model provides the basis for the study of arrhythmogenic activity of the single myocyte
including afterdepolarizations and triggered activity. It can simulate cellular responses under differ-
ent degrees of Ca2+ overload.

In order to study the performance of LRd model with Markovian ion channel[11] mentioned as
LRdm, 𝐼𝐼𝑁𝑁𝑁𝑁 channel of Huxley-Hogkin model in LRd is replaced with the wild-type Markov mod-
els which consists of one conducting open state (O), three closed states (C1, C2, C3), two closed-
inactivation states (IC3, IC2), one fast inactivation state (IF), and two intermediate inactivation
states (IM1, IM2).

2.3 Time Adaptive Methods
The adaptive time-step method can have an effective acceleration for cardiac cell simulation.

The basic idea is to select different time-step according to the inconsistent voltage change rate. As
the voltage rate changes rapidly, in order to maintain the stability of the cell, it is necessary to give
the cell a small time-step. On the contrary, As the voltage change rate is slow, a large time-step can
be set to speed up the simulation.

2.3.1 Traditional Hybrid Method
Traditional Hybrid Method (THM) was proposed by Victorri in 1985 [12]. It computes time-step

through the deviant of voltage, which limit in ∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ≤ ∆V ≤ ∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚. The change rate of voltage
dV/dt determines ∆t. As dV/dt < ∆V𝑚𝑚𝑚𝑚𝑚𝑚, the time-step becomes larger. As dV/dt > ∆V𝑚𝑚𝑚𝑚𝑚𝑚, the
time-step becomes smaller. A range of time-step should be set in order to avoid too small or too
large time-step for high computation cost or instability.

If ∆V < ∆V𝑚𝑚𝑚𝑚𝑚𝑚, then: ∆t = ∆V𝑚𝑚𝑚𝑚𝑚𝑚/(dV/dt)
If ∆V > ∆V𝑚𝑚𝑚𝑚𝑚𝑚, then: ∆t = ∆V𝑚𝑚𝑚𝑚𝑚𝑚/(dV/dt)
If ∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ≤ ∆V ≤ ∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, then: ∆t = ∆V

THM can effectively speed up the heart cell simulation, but it has shortage at local maximum and
minimum zones. As small ∆V creates unwanted large time-step, Chen-Chen-Luo’s quadratic adap-
tive algorithm(CCL) [13] was proposed to solve this problem.

2.3.2 CCL Method
CCL is an effective time-step method proposed by Chen et al [13]. to improve traditional Hybrid

method. The main idea of CCL is to take d2V/dt2 into account, and use d2V/dt2 to deal with
local extremum problems.

Consider the second order Taylor expansion of V(𝑡𝑡𝑛𝑛+1):
V(𝑡𝑡𝑛𝑛+1) ≅ V(𝑡𝑡𝑛𝑛) + V′(𝑡𝑡𝑛𝑛)(𝑡𝑡𝑛𝑛+1 − 𝑡𝑡𝑛𝑛) + 1

2
V′′(𝑡𝑡𝑛𝑛)(𝑡𝑡𝑛𝑛+1 − 𝑡𝑡𝑛𝑛)2 (4)

Where V′(𝑡𝑡𝑛𝑛) = 𝑉𝑉(𝑡𝑡𝑛𝑛+1)− 𝑉𝑉(𝑡𝑡𝑛𝑛)
𝑡𝑡𝑛𝑛+1− 𝑡𝑡𝑛𝑛

, V′′(𝑡𝑡𝑛𝑛) = V′(𝑡𝑡𝑛𝑛+1)− V′(𝑡𝑡𝑛𝑛)
(𝑡𝑡𝑛𝑛+1− 𝑡𝑡𝑛𝑛)

.
Get:

∆V ≅ dV
𝑑𝑑𝑑𝑑
∗ ∆𝑡𝑡 + 1

2
d2V
𝑑𝑑𝑑𝑑2

∗ ∆𝑡𝑡2 (5)
solve the second-order equation:

∆𝑡𝑡 = −𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 ± �(𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑)2 + 2∗𝑑𝑑2𝑉𝑉/𝑑𝑑𝑑𝑑2∗∆𝑉𝑉
𝑑𝑑2𝑉𝑉/𝑑𝑑𝑑𝑑2

 (6)

At �(𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑)2 + 2 ∗ 𝑑𝑑2𝑉𝑉/𝑑𝑑𝑑𝑑2 ∗ ∆𝑉𝑉 ≥ 0 , formula (6) can be solved. If (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑)2 + 2 ∗
𝑑𝑑2𝑉𝑉/𝑑𝑑𝑑𝑑2 ∗ ∆𝑉𝑉 < 0, formula (6) can’t be solved, so ∆𝑡𝑡 is computed by the follow formula:

∆𝑡𝑡 = − 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑
𝑑𝑑2𝑉𝑉/𝑑𝑑𝑑𝑑2

 (7)
Meantime, in order to ensure voltage stable, ∆𝑡𝑡 can’t be changed rapidly. So ∆𝑡𝑡is limited at 2x

faster or slower than last time-step. It means that ∆𝑡𝑡 can’t be higher 2x or lower 2x than the last
time-step:

1/2 ∗ ∆𝑡𝑡𝑛𝑛 < ∆𝑡𝑡𝑛𝑛+1 < 2 ∗ ∆𝑡𝑡𝑛𝑛
Also ∆𝑡𝑡 should be in the range of ∆𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ≤ ∆𝑡𝑡𝑛𝑛 ≤ ∆𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚.

66

2.4 GPU implementation
2.4.1 single GPU

In GPU, we arrange large matrices (potentials, currents, gated variables, etc.) in rows and organ-
ize them into one-dimensional arrays. Because large matrices are much larger than the amount of
on-chip memory, they can only be loaded into off-chip global memory. For constant data (tempera-
ture, conductivity, cell volume, etc.) that are shared by all cells, place it in constant memory. Con-
stant memory, although off-chip, is an efficient use of memory bandwidth because of its combined
access (a single read is available to all threads that need this data). For small-scale data, we put it
into shared memory to make efficient use of bandwidth. For the boundary, we consider the third
boundary condition: extending the outer cell by another layer.

The pseudo-code for the process is shown in Figure 1A.

 A B

Figure 1. Pseudo-code. A is the pseudo-code of single GPU
and B is the pseudo-code of multi-GPUs

2.4.2 multi-GPU
In multi-GPUs, we first divide the data into different GPUs on average. Data exchange before

PDE computation on different GPUs (Figure 1B). In data exchange, we define transition zone and
fill area. The transition zone stores the data that needs to be transferred to other GPUs, and the fill
area stores the data that needs to be transferred from other GPUs. Figure 2 shows the data exchange
process, where the data of the transition zone is put into the fill area.

Figure 2. Data exchange. Light gray indicates the fill area

and black indicates the transition zone

2.5 Mix Root Mean Square error
The MRMSe is proposed by Kevin R [14] and defines by:

[MEMSe] = �1
𝑁𝑁
∑ (𝑤𝑤�𝑖𝑖 − 𝑤𝑤𝑖𝑖

1 + |𝑤𝑤�𝑖𝑖|
)2𝑁𝑁

𝑖𝑖=1

Initialization data;
t = 0; // record running time
while (t < simulated time){
Boundary treatment;
Compute ODE for ∆t;
Compute PDE for ∆t;
if (t % output-time){
Output potential;
t = t + ∆t;
}
Output t;

Initialization data;
t = 0; // record running time
while (t < simulated time){
Boundary treatment;
Compute ODE for ∆t;
Data exchange
Compute PDE for ∆t;
if (t % output-time){
Output potential;
t = t + ∆t;
}
Output t;

67

Where w𝑖𝑖 and w�𝑖𝑖 denote the numerical and the reference solutions of scalar quantity w at time
point i.

2.6 Experimental conditions
The CPU we used was Intel core i7 7700, with main frequency 3.6 GHz, and 16 GB host memory.

The GPU used is NVIDIA GeForce GTX 1080 TI with a frequency of 1582 MHz and video
memory of 12 GB. In addition, the simulation time was 600 ms, and the stimulation started at 10 ms
and lasted 0.5 ms. The simulation was carried out with fixed time-step, THM and CCL respectively.

3. Results

LRdm is run at the fixed time-step as reference solution in comparison to THM and CCL for
computation cost at CPU and multi-GPU.

3.1 Fixed time-step method
Table 1. Computation time in a fixed time-step. For 2000*2000,

CPU cannot be run due to insufficient memory.

model grid dt(ms)
time(s)

CPU 1 GPU 2 GPU 4 GPU

LRdm
1000*1000 0.001 1023954.0 6710.3 3841.4 2138.6
1500*1500 0.001 2062320.1 14984.5 8344.1 4768.0
2000*2000 0.001 / 27519.0 15188.3 8564.8

Using GPU to perform cardiac electrophysiological simulation is an effective acceleration meth-
od. Table 1 shows the computation time in a fixed time-step and apparently GPU has higher accel-
eration efficiency than CPU. It has 150x speedup using GPU in comparison to CPU in LRdm. With
the higher the speedup and the larger the number of GPU, the acceleration reaches up to 270x for 2
GPUs and up to 450x for 4 GPUs.

3.2 THM acceleration
Table 2. Computation time with THM method

model grid dt(ms)
time(s)

CPU 1 GPU 2 GPU 4 GPU

LRdm
1000*1000 0.001-0.1 49185.7 695.1 681.5 650.7
1500*1500 0.001-0.1 94506.9 1108.7 1094.0 985.4
2000*2000 0.001-0.1 139386.1 1571.8 1566.8 1500.4

In Table 2 THM in CPU has 20x acceleration compared to the fixed time-step. In a single GPU,
its acceleration reaches 17.5x than the fixed time-step. However, it is found that the acceleration
decreases as the number of GPU increases, in which acceleration is down to 9.7x in 2 GPUs, and
further down to 5.7x in 4 GPUs.

3.3 CCL acceleration
Table 3. Computation time with CCL method

model grid dt(ms) time(s)
CPU 1 GPU 2 GPU 4 GPU

LRdm
1000*1000 0.001-0.1 11453.5 228.1 177.1 141.7
1500*1500 0.001-0.1 27029.4 408.3 310.7 257.0
2000*2000 0.001-0.1 43325.8 635.9 450.3 334.5

68

In Table 3, CCL has 90x speedup than the fixed time-step method in CPU, and there is 40x
speedup in single GPU, 30x in 2 GPUs, and only 20x in 4 GPUs. Similar to THM, the acceleration
of CCL decreases as the number of GPU increases. However, CCL can still accelerate to over 20x
in 4 GPUs while it is only 5.7x for THM.

3.4 Acceleration ratio for THM and CCL

Figure 3. Acceleration ratio for THM and CCL

Figure 3 shows the acceleration of CCL and THM compared to the fixed time-step in CPU and
multi-GPU. Obviously, CCL is better than THM. As the number of GPUs increases, THM accelera-
tion increases hardly, while CCL acceleration increases apparently. In 4 GPUs, CCL accelerates to
7000x while THM only increases to 2000x. It indicates that CCL has better acceleration than THM.

According to section 2.3, the computation of CCL is obviously more complicated than THM, but
it is true that CCL is faster than THM in simulation. In fact, CCL has a larger granularity for time-
step partitioning than THM and therefore it has a greater acceleration. CCL maintained a large time-
step before and after stimulation as THM maintained a relatively small time-step. Both CCL and
THM maintained small time-step during stimulation. At the local extreme point, CCL maintains a
small time-step less than THM. Thus CCL has faster acceleration than THM.

3.5 Mix Root Mean Square error
Table 4. MRMSe, the benchmark is made with a fixed time-step of 0.0001ms

model method dt(ms)
MRMSe

1 GPU 2 GPU 4 GPU

LRdm
fix time 0.001 0.5% 0.5% 0.5%

CCL 0.001-0.1 1.9% 1.9% 1.9%
THM 0.001-0.1 3.0% 3.0% 3.0%

In Table 4, the MRMSe of the fixed time-step (0.001ms) is only 0.5%, it is 1.91% for CCL, and it
is 3.06% for THM. It is obvious that the accuracy of CCL is better than that of THM.

4. Conclusion

Neither GPU nor adaptive time-step methods alone can achieve good acceleration. This study
combines GPU with CCL or THM to achieve thousands of times of acceleration in a single GPU. In
the previous study, only 498x acceleration was achieved by using the adaptive time-step method
different from CCL and THM in a single GPU [8]. It shows that THM and CCL have good acceler-
ation in GPU and CCL has better acceleration than THM. In a single GPU, CCL is 2.4x faster than
THM, and it is 3.5x or 4.5x faster in 2 or 4 GPUs separately. The MRMSe of CCL was only 1.9%
in comparison to 3.0% of THM. Therefore, CCL is better than THM in terms of acceleration and
accuracy. However, in multi-GPU as the number of GPUs increases to 4, CCL only accelerates by
1.6x while THM hardly accelerates at all. CCL acceleration increases from 4000x in a single GPU
to 7000x in 4 GPUs while it increases from 1800x to 2000x only for THM. In future researches, it
should be paid attention to the linear acceleration of adaptive time methods in multi-GPUs.

0.00

5000.00

10000.00

CPU 1 GPU 2 GPU 4 GPU

CCL THM

69

References

[1] B.M.Rocha, F.O.Campos, R.M.Amorim et al. Accelerating cardiac excitation spread simulations
using graphics processing units. Concurrency and Computation-Practice & Experience 2011(23)
708-720.

[2] Guillermo Vigueras, Ishani Roy, Andrew Cookson et al. Toward GPGPU accelerated human
electromechanical cardiac simulations. International Journal for Numerical Methods in Biomedi-
cal Engineering. 2014(30) 117-134.

[3] Wei Wang, Lifan Xu, John Cavazos et al. Fast Acceleration of 2D Wave Propagation Simulations
Using Modern Computational Accelerators. PLoS ONE. 2014(9) e86484.

[4] Jun Chai, Mei Wen, Nan Wu et al. simulating cardiac electrophysiology in the era of GPU-
cluster computing. IEICE Transactions on Information and Systems. 2013(12) 2587-2595.

[5] Aurel Neic, Manfred Liebmann, Elena Hoetzl et al. Accelerating Cardiac Bidomain Simulations
Using Graphics Processing Units. IEEE Trans Biomed Eng. 2012(59) 2281-2290.

[6] Yong Xia, Kuanquan Wang, Henggui Zhang. Parallel Optimization of 3D Cardiac Electrophysio-
logical Model Using GPU. Computational and Mathematical Methods in Medicine. 2015
862735.

[7] Victor M. Garcia, A. Liberos, A.M. Climent et al. An Adaptive Step Size GPU ODE Solver for
Simulating the Electric Cardiac Activity. Computing in Cardiology. 2011

[8] Rafael Sachetto Oliveira, Bernardo Martins Rocha, Denise Burgarelli et al. Performance evalua-
tion of GPU parallelization, space-time adaptive algorithms, and their combination for simulat-
ing cardiac electrophysiology. International Journal for Numerical Methods in Biomedical Engi-
neering. 2018(34) e2913.

[9] Stanley Rush, Hugh Larsen. A Practical Algorithm for Solving Dynamic Membrane Equations.
IEEE Trans Biomed Eng. 1978(25) 389-392.

[10] CH Luo, Y Rudy. A Dynamic Model of the Cardiac Ventricular Action Potential Ⅱ Afterdepo-
larizations, Triggered Activity, and Potentiation. Circulation Research. 1994(74) 1097–1113.

[11] Xing-Ji Chen, Ching-Hsing Luo, Min-Hung Chen et al. Combination of “quadratic adaptive
algorithm” and “hybrid operator splitting” or uniformization algorithms for stability against ac-
celeration in the Markov model of sodium ion channels in the ventricular cell model. Medical &
Biological Engineering & Computing. 2019(57) 1367-1379.

[12] Bernard Victorri, Alain Vinet, Fernand A et al. Numerical Integration in the Reconstruction of
Cardiac Action Potentials Using Hodgkin-Huxley-Type Models. Computers and Biomedical Re-
search. 1985(18) 10-23.

[13] Min-Hung Chen, Po-Yuan Chen, Ching-Hsing Luo. Quadratic adaptive algorithm for solving
cardiac action potential models. Computers in Biology and Medicine. 2016(77) 261-273.

[14] Kevin R. Green, Raymond J. Spiteri. Gating-enhanced IMEX splitting methods for cardiac
monodomain simulation. Numerical Algorithms. 2019.

70

	1. Introduction
	The heart is one of the important organs of human beings, and cardiovascular disease is one of the three major diseases of human beings, so it is of great significance for the study of the heart. Over recent decades, a variety of cardiac virtual model...
	Since the whole cardiac model includes billions of cells containing multiple state variables per cell, it takes a lot of computational resources to simulate a whole heart. This requires researchers to focus on how to speed up the simulation process. M...
	GPU is an effective acceleration tool, giving up-to 200x for a single GPU applied on cardiac electrophysiological simulation [1-6]. The acceleration was farther improved in the multi-GPU. However, it is still impossible to complete the simulation with...
	At present, some researchers used simple adaptive algorithms to accelerate in the GPU. Victor M. Garcia[7] and Rafael Sachetto Oliveira[8] combined GPU and adaptive time-step method in order to speed up the simulation of cardiac electrophysiology, but...
	This paper accelerates cardiac cell simulation using CCL and THM in multi-GPU to check if the apparent speedup is realized or not.

	2. Methods
	2.1 Cardiac Ventricular Cell Model
	2.2 LRd model + Markov Sodium Channel Model
	2.3 Time Adaptive Methods
	2.3.1 Traditional Hybrid Method
	2.3.2 CCL Method
	2.4 GPU implementation
	2.4.1 single GPU
	2.4.2 multi-GPU
	2.5 Mix Root Mean Square error
	2.6 Experimental conditions

	3. Results
	3.1 Fixed time-step method
	3.2 THM acceleration
	3.3 CCL acceleration
	3.4 Acceleration ratio for THM and CCL
	3.5 Mix Root Mean Square error

	4. Conclusion
	References

